Home

LILA BC is a repository for data sets related to biology and conservation, intended as a resource for both machine learning (ML) researchers and those that want to harness ML for biology and conservation.

Machine learning depends on labeled data, but accessing such data in biology and conservation is a challenge. Consequently, everyone benefits when labeled data is made available. Biologists and conservation scientists benefit by having data to train on, and free hosting allows teams to multiply the impact of their data (we suggest listing this benefit in grant proposals that fund data collection). ML researchers benefit by having data to experiment with.

LILA BC is intended to host data from a variety of modalities, but emphasis is placed on labeled images; we currently host over 8 million labeled images.

We ask that if you use a data set hosted on LILA BC, you give credit to the data set owner in the manner listed on the data set’s landing page.

For more information, or to inquire about adding a data set, email info@lila.science.

LILA BC is maintained by a working group that includes representatives from Zooniverse, the Evolving AI Lab at the University of Wyoming, the University of Minnesota Lion Center, Snapshot Safari, and Microsoft AI for Earth. Hosting on Microsoft Azure is provided by Microsoft AI for Earth.